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1 Introduction

Demographic data are often most useful when they are disaggregated. Data

on mortality rates, for instance, are more likely to lead to better insights and

better policies if they are disaggregated by ethnicity and locality, instead of

being reported only at the national level. Businesses, community organizations,

and city councils need data about their own communities, not the country as a

whole.

Demographers and statisticians have, in recent years, made substantial progress

on methods for analysing disaggregated data. Traditional techniques for demo-

graphic estimation and forecasting struggle to deal with small numbers and ran-

dom variation. New techniques provide excellent options for smoothing through

the random variation, and for quantifying the associated uncertainties. These

new techniques are, however, often inaccessible to potential users without ad-

vanced skills in statistics and computing.

Implementing these techniques in iNZight (Elliott et al., in press), a graph-

ical user interface (GUI) written with R, makes them accessible to a much wider

group of users. Doing so, however, requires some careful design choices. The

challenge is to steer users through the process of building complex models with-

out overwhelming them, and finding the appropriate balance between flexibility,

robustness, and ease of use.

In this paper, we describe a prototype of an iNZight module for Bayesian

demography. The paper provides a brief introduction to Bayesian demography
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and to iNZight. It then describes the implementation details, and illustrates

the use of the module through two case studies.

2 What is Bayesian demography?

Many problems in applied demography, from measuring changes in life ex-

pectancy, to forecasting births, to estimating populations in small areas, have

a common structure. The data come in the form of tables of cell counts, rather

than the classic rows-for-cases, columns-for-variables format.1 Demographic

data, in other words, look like

Female Male

Age 0–4 34 82

Age 5–9 17 23

Age 10+ 45 41

rather than

Person Age Sex

1 3 Female

2 14 Male

3 5 Male

4 7 Female

5 10 Female

6 12 Female

7 0 Male

The number of dimensions for demographic data is typically small, especially

when compared with the datasets used in much of modern statistical modelling

and machine learning. However, the level of detail required for each dimension

can be large: for instance, analyses of mortality often use over 101 separate

age groups, and there is strong interest in variation across all these age groups.

Moreover, there is often interest in interactions: how age profiles differ between

females and males, for instance, and how these differentials evolve over time.

1R users may be familiar with this being referred to as ‘tidy’ format.
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The distinctive datasets and questions of demography have given rise to

distinctive methods, so that there has traditionally been only limited overlap

between applied demography and mainstream applied statistics. However, as

the toolkit of mainstream applied statistics has expanded, and as demographers

have begun to grapple with problems such as sampling variation or the analysis

of time series, there has been extensive cross-fertilization between demography

and statistics (Alho and Spencer, 2005).

Although statistical demography in general has been developing quickly in

recent years, Bayesian approaches to statistical demography have grown par-

ticularly fast (Bijak and Bryant, 2016). Bayesian statistics is an alternative to

the “classical” or “frequentist” approaches that dominated statistical practice

for much of the twentieth century. From a theoretical point of view, the dis-

tinctive feature of Bayesian statistics is its willingness to represent all forms of

uncertainty in quantitative terms through probability distributions. But for ap-

plications, the distinctive feature of Bayesian statistics is its extreme flexibility,

which allows it to handle complex problems that might otherwise be intractable.

The most prominent example of Bayesian demography is the national and

global population forecasts by the United Nations, which are done using Bayesian

methods (Gerland et al., 2014). However, Bayesian methods have also been

widely used at the subnational level, such as for small area estimation and fore-

casting of fertility, mortality, and migration rates (e.g. Alexander et al., 2017;

Schmertmann and Gonzaga, 2018; Burstein et al., 2019; Zhang and Bryant,

2020). Bayesian approaches have proven particularly useful in demographic

applications involving small sample sizes, measurement error, and forecasting.

3 Bringing Bayesian demographic methods to a

wider group of users

Tools for general-purpose Bayesian computing have been improving fast (e.g.

Carpenter et al., 2017; Salvatier et al., 2016). However, using these tools to

design models for the distinctive problems of applied demography requires pro-

gramming and statistical skills that are not common among applied practition-

ers.

R packages providing facilities for Bayesian demographic modelling have be-

gun to appear. The team responsible for the United Nations population pro-

jections has published open source R packages implementing all their methods
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(Ševč́ıková and Raftery, 2016). Another important example is the SUMMER

package, which implements a specific class of models for estimating childhood

mortality in small areas (Li et al., 2021).

There are also some excellent non-Bayesian packages for statistical demog-

raphy. The StMoMo package, for instance, implements a large number of

different models for mortality at all ages (Villegas et al., 2018). The demog-

raphy package implements models for fertility, mortality, and migration, and

does population projections, though only for data that have dimensions “age”,

“sex”, and “time” (Hyndman, 2019).

Packages dembase, demest, and demlife, which were developed at Statis-

tics New Zealand with contributions from external collaborators, provide gen-

eral facilities for Bayesian demographic modelling. The dembase package

provides tools for manipulating demographic data, the demest package does

Bayesian model-fitting and forecasting, and the demlife package uses estimates

of mortality rates to construct life tables and estimates of life expectancy.

There are no restrictions over the dimensions that are included in the mod-

els, and the estimation models cover a wide variety of use cases in applied

demography (Bryant and Zhang, 2019). The statistical models come with de-

faults that give acceptable performance for many problems. All three packages

are open source, and are on the Statistics New Zealand GitHub repository,

://github.com/statisticsnz/R. The packages are currently used to produce

official statistics on mortality, and further applications are being investigated.

Although the dembase, demest, and demlife packages do not require

advanced skills in demography or statistics, they do require some proficiency

with R. Even this requirement is an important barrier for many potential users

of Bayesian demographic methods. Small national statistical offices, community

or local-government organizations, or small businesses, for example, often do not

have the resources to support specialist R programmers. These types of users

can, however, quickly learn to use iNZight. Adding functionality for Bayesian

demography to iNZight is therefore a practical way of bringing these methods

to a much wider audience.

3.1 An introduction to iNZight

iNZight is a free, open-source GUI built with R for visualising and analysing

data without the need to code. The point-and-click interface provides easy ac-

cess to common data visualisation techniques, statistical analysis methods, and
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data wrangling, and is well suited to both education and applied settings. For

the latter, the simplicity of design makes iNZight ideal for organisations with

limited resources, enabling analysts without coding skills to perform common

statistical procedures with ease.

Recently, iNZight has been equipped with an add-on system, making it

extensible to new data types and analytic methods. It works by allowing devel-

opers to write a simple, self-contained GUI interface using gWidgets2 (Verzani,

2019) with input controls for unique graphical and analytic outputs. Users just

need to install the add-on to iNZight to gain the new functionality on top of

what iNZight already offers (for example importing and wrangling data).

3.2 A Bayesian demography module for iNZight

An important advantage of building on top of an existing, extensible system

such as iNZight instead of developing a standalone app is the ability to take

advantage of all the existing functionality. This includes common processes

such as data import and wrangling tools (including aggregation for standard

and survey data). However, it also comes with an existing build and deploy

system (iNZight features a standalone Windows installer that does not require

users to install or interface with R).

A GUI interface to complex modelling packages like demest does not need

to offer the full set of features—the vast majority of users only need a small set

of features and good defaults for everything else to do what they need. For this

reason, we put together an iNZight module interfacing with the dembase,

demest, and demlife packages introduced above. Currently, the prototype

implements Normal, Poisson, and Binomial models for demographic data, with

additional methods for mortality data (namely life expectancy calculations using

the demlife package).

3.2.1 Interface layout

The module is structured in a way that asks for the least amount of information

from the user as possible before providing “guesses” that can be overridden

when necessary. The interface is divided into several sections, each collecting

information needed for the next. In this way, users are not overwhelmed with too

many decisions at once—instead, they simply fill out each input as it appears.

The first panel is where the overall model type is specified, which starts by

asking the user to specify the response variable in the data set. In many cases,
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this will be counts or similar, but may be something more informative such as

deaths or income. For the latter, the module will attempt to detect the model

type from the variable. For example, a variable called deaths will automatically

apply a deaths model, which (in the future) will provide special presets for the

model parameters. If iNZight cannot decide on a model type, the user can

easily pick one from the drop-down. Based on the model chosen (manually or

automatically), the response framework is chosen (Normal, Poisson, or Bino-

mial) describing how we will model the response. In our example, the response

deaths will be modelled using a Poisson distribution, which is standard for

(mortality) rates.

After choosing the response and modelling framework, the next section al-

lows users to modify the variables used in the model. Check boxes control the

inclusion of individual variables, alongside information about their types to be

used in the model. Confirming the variables automatically displays a plot of

the raw response (counts or measurements) by the chosen explanatory variables,

giving the user an opportunity to check everything looks sensible, and make an

initial visual exploration of the data.

The next section allows users to specify the remaining parts of the model.

This includes the formula for the (transformed) response as a function of the ex-

planatory variables, using the standard R formula syntax, including interactions

with the colon (:) or asterix (*). Examples are given in Section 4.

Specifying the formula automatically generates a list of parameters in the

model, each of which can be given its own hyper-prior. By default, the module

uses the defaults supplied by demest (e.g., exchangeable priors are used for

sex and region variables) but optionally a dynamic linear model (DLM) can

be fitted to any of the terms. In the prototype, DLMs (with optional trend and

damping) are the only additional prior, but future versions will have a greater

range of options.

Within the iNZight prototype module, users must manually specify simula-

tion parameters, as shown in Fig. 4. However, future versions will use updated

versions of the demest package(s) and automatically run the Markov chain

Monte Carlo (MCMC) simulations until convergence is obtained. This is a

necessary condition for an interface targeting non-expert users. Once the sim-

ulations are complete, the results are shown automatically in the graph as the

posterior median and credible regions for each of the observed counts, along

with the näıve estimate based on raw counts or proportions. Within the pro-

totype, there are limited features for working with the resulting object, namely
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viewing the results (default), as well as looking at the posterior distributions of

various model parameters by choosing them from the menu.

Once the MCMC simulation has finished, the graph is updated with the

posterior fit for the underlying rate/measurement, overlaid with the näıve es-

timates. This gives a quick visual guide of how well the model fits the data.

Posterior distributions of individual parameters can be explored using the pa-

rameter tree. Additionally, if a time variable was included, forecasts can be

obtained.

All of this is performed using simple, intuitive GUI interface widgets, such

as drop-down boxes, sliders, and text inputs. At no point do users need to

interact with code (except arguably when specifying the model formula). The

hope is that this will fulfill the basic needs of users who need only do simple

demographic inference occasionally.

4 Bayesian demography with iNZight

To demonstrate the new iNZight module, we demonstrate two demographic

analyses on pre-tabulated data using iNZight. Model details can be found on

the Github repository https://github.com/terourou/small-area-estimation

(in the vignettes directory).

4.1 Life expectancy

Our first example is annual estimates of life expectancy in Iceland, by sex, for

the period 2015–2019. The input data on deaths and population come from

the Statistics Iceland online database.2 Given the small size of the Icelandic

population (360,100 people in 2019), cell counts in the deaths and population

data are small. The average number of deaths in each combination of age,

sex, and year is 16, and 8% of combinations have counts of 0. Traditional

methods for estimating mortality and life expectancy would struggle with data

this disaggregated.

The data is first formatted into an R data frame with a column for age,

sex, and year, plus columns for the count and total population size in each

combination of the variables.3 The result after importing into iNZight is shown

2Tables Deaths by municipalities, sex and age 1981-2019 and Population by municipalities,
sex and age 1 January 1998-2020 - Current municipalities, accessed on 9 February 2021.

3iNZight works with ‘tidy’ data.
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Figure 1: iNZight main window with life expectancy data loaded.

in Fig. 1. We can construct a hierarchical model to estimate life expectancy from

the death counts in each cell by starting the small area estimation module from

iNZight’s Advanced menu.

First, the response (deaths) is chosen from the variable drop-down, which

automatically populates the model type and framework based on the variable

name. After choosing total as the exposure variable, the first part of the

model specification process is complete, which is registered by clicking the Save

button. Next we choose which additional variables to include in the model (by

default all are included), and, after saving, iNZight produces a graph of the

raw data (which can be tweaked in the Plot modifications panel). The first

three panels are displayed, along with the graph generated, in Fig. 2. Behind

the scenes, iNZight converts the ‘tidy’ data to a pair of demographic arrays

(see Section 2) for death counts and totals.

We now move to model specification which, by default, uses a linear combi-

nation of the explanatory variables (age, sex, and year) to model the underlying

mortality rate in each cell. This is easily modified using standard R formula

syntax, as shown in Fig. 3, where we are fitting a complex hierarchical model
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Figure 2: The demographic modelling module displays a simple graph of näıve
death rate estimates automatically after specifying the response, framework,
and explanatory variables. The Plot Modifications panel (left) allows users to
change the x variable and colour variable.
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Figure 3: Model specification with the module simply requires specifying the
formula for the underlying rate parameter, λ, and specifying the priors for the
variables.

of counts yijk in populations of size Nijk, for age i, sex j, and year k, where

the number of deaths is Poisson with rate Nikjλijk. The underlying rate is a

function of age, sex, and year, with an interaction between age and sex (using

the colon, :). After specifying the model, the software presents a list of param-

eters that can be given priors: currently, the software uses either the defaults

provided by demest, but may use a DLM instead. DLMs are useful for time-

variables (e.g., age and year) where adjacent values are correlated. The model

details are handled by the demest package behind-the-scenes so the user does

not have to.

The standard summary indicator for mortality rates is life expectancy, a

complicated non-linear transformation of mortality rates. Using traditional sta-

tistical methods, calculating point estimates and error bands for life expectancy

is complicated. Using Bayesian methods, however, it is easy. The demlife

package contains a set of methods for producing life expectancy estimates from

death rate estimates, all accessed from a single option in the iNZight module.

By choosing Life expectancy from the drop-down, life expectancies for each

sex over time are calculated and graphed, as shown in Fig. 5.
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Figure 4: Specification of MCMC simulation parameters, along with the final
graph resulting from fitting the Bayesian hierarchical model to the data, showing
the posterior mean (solid line), 95% credible interval (shaded region), and näıve
estimates (points, dotted lines).
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Figure 5: Life expectancy estimate from the model. Traditionally, a complex
non-linear transformation is required, but here a simple drop-down selection is
all that is required.
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Figure 6: iNZight main window with diabetes data loaded.

4.2 Diabetes

Our second example is the estimation and forecasting of diabetes prevalence in

Aotearoa New Zealand, by 5-year age group and by ethnicity (Māori vs non-

Māori). The data on numbers of people with diabetes come from the Virtual

Diabetes Register, and were supplied as a custom tabulation by the Ministry

of Health.4 The data on population come from the Infoshare database on the

Statistics New Zealand website.5

Once again, the data is prepared for iNZight, with columns for each of the

predictive variables age (in 5-year intervals), time (required for forecasting), and

ethnicity (Māori or non-Māori). Attached to these categories are the population

counts (population) and the numbers of people with diabetes (diabetes). This

is imported directly into iNZight as shown in Fig. 6. We will develop a model

to estimate the probability of someone in each age group having diabetes, and

use the model to forecast rates for the future.

4https://www.health.govt.nz/
5Tables Estimated Resident Population by Age and Sex (1991+) (Annual-Jun) and Māori

Ethnic Group Estimated Resident Population by Age and Sex (1991+), accessed from https:

//www.health.govt.nz/ on 14 April 2021.
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Figure 7: The demographic modelling module displays the basic graph obtained
after specifying the response, framework, and explanatory variables. This shows
the näıve estimates of diabetes prevalence by ethnicity and age groups over time.

As before, we start by specifying the response information in the top-left of

Fig. 7, in this case the number of people in each group with diabetes (diabetes).

This time, there is no built-in model for diabetes, so we must specify other for

the response type, and choose binomial for the framework. The population

total for the binomial probability calculation is the total population in each

group (population). After confirming the model and the variable information

(we are using all three explanatory variables), we get a graph of diabetes preva-

lence (displayed in Fig. 7). It is clear that Māori from about age 40 experience

higher rates of diabetes, and that the overall prevalence of diabetes has been

increasing over time. However, to predict what proportion of the population

will have diabetes in the future, we need to fit a hierarchical Bayesian model

to these data and include multiple DLMs for the various predictors (and their

interactions).

The specification of the model this time includes all two-way interactions,

specified using R syntax.6 The response diabetes is a binomial outcome, where

6This could more succinctly be written using (age + ethnicity + year)∧2.
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Figure 8: Model specification is a simple process of specifying the formula for
the underlying rate parameter, and adding priors for the variables, if desired.

the log odds of having diabetes is a function of age, ethnicity, year, and the two-

way interactions age:ethnicity, age:year, and ethnicity:year. A three-

way interaction could be included, if required, but this increases computational

requirements. For the parameter priors, all but ethnicity (categorical) were

fitted with DLMs, which allow for forecasting for future values of year. The

features of the priors are displayed in Fig. 8.

Finally, we can specify the simulation parameters.7 Clicking the Fit Model

button compiles the hierarchical model and estimates the posterior distribution

using MCMC techniques. The results are displayed automatically once com-

plete, as shown in Fig. 9. Unlike the life expectancy example, the posterior

distributions are much more closely aligned to the data, due in part to the ad-

ditional complexity with interactions and DLMs. This is necessary for making

useful forecasts.

Like before, doing the final forecast within the iNZight module is as simple

as selecting the Forecast option from the drop-down. The results, shown in

Fig. 10, show that there remains considerable uncertainty—particularly in older

age groups—in diabetes prevalence, but the general trend for most Māori groups

7Only required for the prototype.
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Figure 9: Specification of MCMC simulation parameters, along with the final
graph resulting from fitting the Bayesian hierarchical model to the data. The
posterior mean (solid line) very closely matches the näıve estimate (points).

suggests . . . a continual increase?, while non-Māori exhibit a plateau or reduction

in diabetes prevalence?.

5 Future work

Work is currently underway on a suite of new R packages to replace dem-

base, demest, and demlife. Development versions of the code are at https:

//github.com/bayesiandemography. The new packages will have an improved

interface and new algorithms that should give shorter computation times and

require less input from users. Future versions of the iNZight Bayesian de-

mography module will incorporate these new features. One particular focus is

developing ways of capturing empirical regularities in demographic data, such

as standard age profiles for mortality, fertility, and migration rates, and building

these automatically into models, with the aim of increasing computation speeds,

robustness, and reliability.
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Figure 10: Diabetes forecasts by age group and ethnicity.
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Acronyms

DLM dynamic linear model. 6, 10, 14, 15

GUI graphical user interface. 1, 4, 5, 7

MCMC Markov chain Monte Carlo. 6, 7, 11, 15, 16
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